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Partial mixing of a liquid in cross motion of the phases is considered. Part of the liquid (ϕ) on a
plate is totally mixed, while the other part (1 − ϕ) moves in the regime of ideal displacement; the
degree of mixing is determined by the relation of these parts. The composition of a vapor after the
plate is taken to be equal to the average value of the compositions of the vapor that come out of the
initial and final portions of the plate in the direction of liquid motion. After an ideal plate these
compositions are in equilibrium with the arriving and leaving liquid, respectively. The analytical de-
pendences of the efficiency on the parameters of a real plate are obtained. The equality of the effi-
ciencies in the vapor and liquid phases is proved. Certain particular and limiting cases of
applicability of the complex model are considered.

It is noted in [1] that in countercurrent motion of the phases the mixing of a liquid has an appreciable
effect on the efficiency of mass transfer, decreasing it as compared to ideal displacement. A special feature
of the mixing in countercurrent flow is its more substantial effect in the direction of the liquid flow and the
less appreciable effect in the perpendicular direction. The degree of mixing of the liquid is evaluated by the
relation between its totally mixed part and the part moving in the regime of ideal displacement.

In cross flow, the mixing also reduces the efficiency of mass exchange. Unlike the countercurrent
flow, it is substantial in the directions of both flows. However, this feature of mixing in cross flow can also
be evaluated by the amount ϕ of a totally mixed liquid and the amount 1 − ϕ of an ideally displaced liquid.

In total mixing of the entire liquid on a plate, the vapor leaving the plate is in equilibrium with the
discharging liquid:

(yn
∗ )mix = mxn−1

∗  .

In ideal displacement, the vapor leaving the initial portion of an ideal plate is in equilibrium with the
arriving liquid (Fig. 1):

(yn,in
∗ )dis = mxn

∗  ,

while the vapor leaving the final portion is in equilibrium with the leaving liquid:

(yn,fin
∗ )dis = mxn−1

∗  .

The average composition of the vapor after the plate of ideal displacement on condition that the de-
pletion of the liquid is uniform is
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(yn
∗ )dis = 

(yn,in
∗ )dis + (yn,fin

∗ )dis

2
 = m 

xn
∗  − xn−1

∗

2
 .

With allowance for the adopted evaluation of mixing, the composition of the vapor after an ideal
plate is

yn
∗  = ϕ (yn

∗ )mix + (1 − ϕ) (yn
∗ )dis = ϕmxn−1

∗  + (1 − ϕ) m 
xn

∗  − xn−1
∗

2
 . (1)

By analogy with the cross motion of the phases without mixing [2], we can use the following model
of mass exchange in the presence of mixing. The arriving and outgoing flows of a vapor and a liquid on
ideal and real plates differ in composition and are equated at a certain distance h for the vapor and h1 for the
liquid from the site of injection of the flows. The equations of equality of the concentrations of a highly
volatile component in the vapor phase and the liquid are analogous to the corresponding equations of cross
flow without mixing [2]:

hyn
∗  + (1 − h) yn−1

∗  = hyn + (1 − h) yn−1 , (2)

(1 − h1) xn
∗  + h1xn−1

∗  = (1 − h1) xn + h1xn−1 . (3)

The equations of material balance of the highly volatile component for ideal and real plates and the
expressions of the efficiency in the vapor and liquid phases have the same form as in concurrent motion [3].

The concentrations of the highly volatile component in the vapor phase before and after an ideal plate
expressed in terms of the parameters of an actual plate retain their form in the absence of mixing as well [2]

yn−1
∗  = hyn + (1 − h) yn−1 − h 

yn − yn−1

Ev
 , (4)

yn
∗  = hyn + (1 − h) yn−1 + (1 − h) 

yn − yn−1

Ev
 , (5)

and their difference in the liquid with account for (1) is modified:

xn
∗  − xn−1

∗  = 
2 (1 − h1)

1 − 2h1 + ϕ
 xn + 

2h1

1 − 2h1 + ϕ
 xn−1 − 

2h

1 − 2h1 + ϕ
 
yn

m
 −

Fig. 1. Scheme of the cross motion of the vapor and liquid phases on
real (a) and ideal (b) plates in mixing.
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− 
2 (1 − h)

1 − 2h1 + ϕ
 
yn−1

m
 − 

2 (1 − h)
1 − 2h1 + ϕ

 
yn − yn−1

mEv
 . (6)

Using (4)−(6) to solve the equations of material balance of ideal and real plates [3], we obtain

xn − xn−1 = 



xn−1 − 

yn−1

m



 Ev  ⁄ 




L (1 − Ev) 





1 − h
mV

 + 
1 − h1

L




 + 

L
mV

 Ev − 
1

2
 + 

ϕ
2




 . (7)

The analogous dependence can be found using the efficiency in the liquid, which confirms  the equal-
ity of the efficiencies in the vapor and liquid phases:

Ev = Eliq = Ek,ϕ . (8)

In the particular cases where h = h1  or  h = h1 = 0.5, formula (2) takes the corresponding forms:

xn − xn−1 = 



xn−1 − 

yn−1

m



 Ek,ϕ  ⁄ 




(1 − Ek,ϕ) (1 − h) 





L

mV
 + 1




 + 

L

mV
 Ek,ϕ − 

1

2
 + 

ϕ
2




 , (9)

xn − xn−1 = 



xn−1 − 

yn−1

m



 2Ek,ϕ,m  ⁄ 





L

mV
 + 

L

mV
 Ek,ϕ,m − Ek,ϕ,m + ϕ




 . (10)

The boundary conditions of a generalized model are the conditions of the relationship of ideal and
real plates inherent in the Murphree [4−6] and Hausen models [5−7] where the distances h and h1 become
equal to zero or to unity. Formula (7) in this case is simplified to the corresponding form:

for yn−1
∗  = yn−1, xn−1

∗  = xn−1 (h = 0, h1 = 1) 

xn − xn−1 = 



xn−1 − 

yn−1

m



 Ek,ϕ1  ⁄ 





L

mV
 − 

1

2
 + 

ϕ
2




 ; (11)

for yn
∗  = yn, xn

∗  = xn (h = 1, h1 = 0)  

xn − xn−1 = 



xn−1 − 

yn−1

m



 Ek,ϕ2  ⁄ 





L

mV
 Ek,ϕ2 − Ek,ϕ2 + 

1

2
 + 

ϕ
2




 ; (12)

for yn−1
∗  = yn−1, xn

∗  = xn (h = 0, h1 = 0) 

xn − xn−1 = 



xn−1 − 

yn−1

m



 Ek,ϕ3  ⁄ 





L

mV
 − Ek,ϕ3 + 

1

2
 + 

ϕ
2




 ; (13)

for yn
∗  = yn, xn−1

∗  = xn−1 (h = 1, h1 = 1)  

xn − xn−1 = 



xn−1 − 

yn−1

m



 Ek,ϕ4  ⁄ 





L

mV
 Ek,ϕ4 − 

1

2
 + 

ϕ
2




 . (14)

By equating the right-hand sides of dependences (10)−(14) we obtain the relation between the effi-
ciencies of the considered variants:
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L
mV

 + ϕ

2Ek,ϕ,m
 + 

L
2mV

 − 
1
2

 = 

L
mV

 − 
1
2

 + 
ϕ
2

Ek,ϕ1
 = 

L
mV

 − 1 + 
1 + ϕ
2Ek,ϕ2

 = 

L
mV

 + 
1
2

 + 
ϕ
2

Ek,ϕ3
 − 1 = 

L
mV

 − 
1 − ϕ
2Ek,ϕ4

 . (15)

We can obtain from (7) and (10) the expressions of the efficiency of a real plate with the known
experimental data

Ek,ϕ = 



(1 − h) L

mV
 − h1 + 

1
2

 + 
ϕ
2




  ⁄ 











xn − 
yn−1

m
xn − xn−1

 − h 
L

mV
 − h1









  ,
(16)

Ek,ϕ,m = 


L
mV

 + ϕ


  ⁄ 











xn + xn−1 − 2 
yn−1

m
xn − xn−1

 − 
L

mV









  .
(17)

As is seen from Fig. 2, mixing in the case of cross flow and L ⁄ mV = 1.5 has a small effect on the
interrelation of the efficiencies. The efficiency Ek,ϕ,m corresponding to the complex model is somewhat lower

Fig. 2. Dependence of Ek,ϕ1 (a), Ek,ϕ2 (b), Ek,ϕ3 (c), and Ek,ϕ4 (d) on
Ek,ϕ,m for L ⁄ mV = 1.5 and different values of ϕ: 1) 0.0; 2) 0.2; 3) 0.5;
4) 1.0.
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than Ek,ϕ1, which takes into account the conditions of the relationship of ideal and real plates in the Murphree
model in analysis of the efficiency in the vapor phase (Fig. 2a), slightly higher than Ek,ϕ2, which reflects the
Murphree model in its analysis in the liquid (Fig. 2b), and appreciably lower than Ek,ϕ3, which characterizes
the Hausen model (Fig. 2c). Mixing somewhat reduces the efficiency in the first and third cases, improves it
in the second case, and decreases the difference in the indicated pairs of efficiencies without eliminating it
fully in all three cases.

Just as in the absence of mixing in cross flow [2], its presence yields no values of the relations of
Ek,ϕ,m and Ek,ϕ4 in the real range (Fig. 2d). The second of the indicated efficiencies can be considered only
in theoretical terms, since the real values of one efficiency correspond to the unreal values of the other.
Therefore, the use of Ek,ϕ4 in calculations is of limited character and is possible only in the case of unreal
values of Ek,ϕ,m.

When the value of one distance is fixed, a decrease in h (Fig. 3a) or h1 (Fig. 3b) and also a simul-
taneous decrease in them (Fig. 4) improves the efficiency. In the latter case, the real efficiencies are possible

Fig. 3. Dependence of Ek,ϕ on Ek,ϕ,m for L ⁄ mV = 1.5, h1 = 0.5 (a), and
h = 0.5 (b), and also for different values of h (a) and h1 (b): 1) 0.0; 2)
0.1; 3) 0.2; 4) 0.4; 5) 0.5; 6) 0.6; 7) 0.8; 8) 1.0.

Fig. 4. Dependence of Ek,ϕ on Ek,ϕ,m for L ⁄ mV = 1.5, h1 = h, and differ-
ent values of h: 1) 0.0; 2) 0.1; 3) 0.2; 4) 0.4; 5) 0.5; 6) 0.6; 7) 0.8; 8)
0.9; 9) 1.0
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when h = h1 < 0.9, which is in good agreement with the data of Fig. 2d, for which, as has been noted above,
h = h1 = 1.

NOTATION

E, efficiency of the plate; ϕ, amount of the totally mixed liquid on the plate; h and h1, dimensionless
distance from the site of injection of the vapor and the liquid, respectively, to the surface of equality of the
concentrations of the phases on the ideal and real plates; L, molar flow of the liquid; m, coefficient of equi-
librium; V, molar flow of the vapor; x and y, concentration of the highly volatile component in the liquid and
the vapor, respectively. Subscripts: dis, ideal displacement; ϕ, allowance for the mixing of the liquid; fin,
final portion; k, cross motion of the phases; k,ϕ, m, cross motion of the phases in mixing and for the values
of h and h1 equal to half their total value; liq, liquid phase; in, initial portion; n, number of the considered
plate; n−1, number of the preceding plate in the direction of vapor motion; mix, ideal mixing; v, vapor phase.
Superscript: *, ideal conditions.
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